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Abstract. A variational correction procedure is derived for evaluating the solutions of sets 
of coupled differential equations. The procedure s compared and contrasted with the 
Kohn correction method and with perturbation thedry; and illustrated by considering a 
simple exactly soluble problem. The procedure has particular applications in scattering 
theory. 

1. Introduction 

In a previous paper (Rudge 1980a) a variational procedure for determining multichan- 
nel scattering parameters was described, and in a subsequent paper (Rudge 1980b) a 
variational technique was used to develop asymptotic solutions. Using these methods 
high accuracy can be achieved by systematically increasing the size of the basis set. 
For some applications, however, it is more convenient to fix the basis set and to use 
a variational correction technique to optimise the results that can be obtained with 
this established basis. One conventional procedure for determining a variational 
correction is due to Kohn (1948) but, as pointed out by Kat0 (1950), any asymptotic 
normalisation of the trial function can be used and there is a different correction 
belonging to each such arbitrary choice of normalisation. The fact that there are 
infinitely many ‘corrections’ and no basis for choosing the best one is a great drawback 
of the Kohn method. The purpose of the present paper is to derive a correction formula 
for the solutions of coupled differential equations which does not have this deficiency. 
The method can be used either to determine the solutions themselves or the scattering 
parameters directly. It is shown that there is an ambiguity in perturbation theory which 
is somewhat similar to that of the Kohn variational correction and the three methods, 
the conventional correction technique, the correction technique derived here and the 
perturbation results are compared for the case of a simple soluble potential. 

The technique described has a number of applications in scattering theory and in 
particular may be used to find asymptotic solutions. 

2. Theory 

2.1. The variational method 

Let us consider for example an N-channel scattering problem and define 

l s q s N  
D q = - + k i - +  d2 l ( 1  +1) 

d r2 r 
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and 

2, = diag( 0,). 

A wide variety of scattering processes are described by equations of the form 
P 

s,,~,, = -vP,, = C r-PvpP,,  (3) 

for large values of the variable r, where 9,, is an N x N solution matrix, the constant 
matrices vp are symmetric and v1 = diag( - 2 2 ) .  There are two linearly independent 
matrices F A  and it is convenient to group these and their derivatives into a single 
matrix 9 defined by 

p = 1  

We may normalise the solutions to have a unit Wronskian by choosing the asymptotic 

( 5 )  

forms of PI and F2 in the open channels, (k’ ,  > 0), to be 

S2 + i . F I  - diag( IC,’” exp io,) 
r - c c  

where 

8, = k,r - i l ,~+ 77, In(2k,r) +arg r( /, + 1 -iVq) 

and 77, = Zk,’.  If some channels are closed then, for these values of q, we can write 
k i = - K i  and 

- N,(2Kq) - l i2  exp(K,r- 77, In r )  
r-cc  

(P2),, - N q 1 ( 2 K q ) - ” *  exp[-(K,r - 7, In r ) ]  
,-.T 

where 77, = Z K  4‘ and Nq is arbitrary. If we define 

& =  - _ _ I - - -  (:, ; :) 
then the Wronskian condition can be written 

& E * = - &  

at all values of r. We may note that, given any $27 which satisfies (9) 

G = P Z  

also satisfies (9) provided that - 
Z&Z = E .  

Now let 

$27; =SA -k 89,, h = 1 , 2  

be trial solution matrices where 

8 F A ( r =  R I )  = 0. 

(7)  
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On defining 
RI 

L A ,  = 5 &,(90+V)9L d r  
Rn 

we find, on integrating by parts, that 

1659 

(14) 

L A ,  = (& 8 9 ,  - @ A  8 9  L) Ro + ( S @ A  ( 9 0  + V) 8 9 , )  (15) 

where the condition (13) has been used and where the integration of equation (14) is 
denoted in (15) by brackets. 

If we now define 

then the four results of equation (15) can be combined to give the variational principle 

L =  - ( & & 8 9 ) r =  Ro+ (8F(sCl + V)8F) .  (17) 

where F comprises the first N rows of 9. The importance of (17) is that if a value 
is assigned to the second-order term then it is possible to solve for F. In the Kohn 
method, wherein one uses a variational principle for only one of the solutions, this is 
not possible. If we assign the value zero to the second-order term and use a trial 
matrix which satisfies 

- &  (18) 

9 = 9 l X  (19) 

x=I+&L. (20) 

then on writing at r = Ro, 

we find from (17)  that 

Reference to equation ( l l ) ,  however, shows that the result (20) is not quite good 
enough because the Wronskian relation is not satisfied by i t ;  this arises because the 
proper value of second-order term in (17) is not zero. Equation (11) is satisfied by 
any matrix 2 of the form 

2 = ( I +  &Y)(l- &Y)- '  (21) 
provided that 

Y = 9  
We therefore obtain a better variational correction if we write X in the form (21) and 
allow it to have the approximate value (20). Since L = i one simple procedure is to 
replace (20) by 

(23) x = (I + ; E  L) ( I - ;E  L)- ' .  

A second possibility is to choose 

X = (I  + tanh ;EL)(I - tanh ;EL)- '  = exp(&L). (24) 

If IL/ is small then there is little difference between (23) and (24) but the latter is more 
reliable if IL/ is large and can be approximated by writing 

tanh($sL) = ~ E [ L ( I + ~ E L ) - ' +  ( I  -;L&)-'L]. (25) 
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Suppose that at r = Ro N solution vectors Po have been calculated which satisfy 
the boundary condition that they are regular at the origin. Then at r = Ro there exist 
matrices A, such that 

If there are No open channels we may choose A, to be 

and the leading No x No block of A? is the K matrix of scattering theory. 
The accuracy of the calculation can be syatematically improved without changing 

the basis size by using intermediate values of r, say rJ, where Ro RI .  The K matrix 
can then be compared with its previous value and  the number of intermediate steps 
increased until the desired accuracy is attained. The variational correction method 
can thus be made as accurate as is needed without changing the basis size. 

The choice of trial functions can be made in a variety of ways. If we define + A  by 

rJ 

and 

where &)E@ = - E ,  then perhaps the simplest choice is to write 

S' = *a (30) 

and a is chosen to satisfy the boundary conditions at r = RI.  

2.2. Perturbation theory 

It is interesting to compare the variational procedure with a perturbation approach to 
the problem. Let 

F = ( F ,  ;FJ (31) 

and  write equation (3) in the form 

S o F =  -pVF (32) 

where p is a parameter. If we write 

F = p F'" ' 
n 

then, on equating the coefficients of all powers of p zero, it is found that 

=S?oF'o' = 0 
S 0 F ( " )  = -VF'"-'). 

(33) 

(34) 

If + = (4, i +*) then a Green matrix for the operator go is given by 

g(r ,  r ' )  = + ( r ) t z t j ( r t ) u ( r f -  r )  (35) 
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where U is the unit step function. The solutions of (34) then become 

F'O) = +X0 (36) 
RI 

F ' " ' =  +e 1 + ( r ' ) V ( r ' ) F ( n - l ) ( r ' )  d r ' + + X ,  
r 

where the X, are constant matrices. If the order of approximation is N and 

(37) 

n = O  

then the boundary conditions at r = R ,  are satisfied by F N  if 
N c /.Lnxn=ff. (39) 

n = O  

This does not determine the X, and the usual practice is to make an arbitrary selection, 
for example, 

x, = 8,oa. (40) 

If this choice is adopted then from (37) we get 

F , = + c u + + e ( & ) - ' L  

= + a ( l + e L )  

and the the first-order perturbation result is identical with that of equation (20). 
A more satisfactory choice of the X, can be made by examining 

LN = ( ~ N W O + P V ) F N )  
= p N N + ' ( F N V F ( N ) )  

(42) 2N+ I (  i( N)vF(  N ) )  + N+1( F VF(  N ) ) .  = c L  N-1 

The structure of (42) suggests that LN, the matrix which appears in the variational 
correction, can be made of order p2N+1, by choosing 

( F N - I ~ ~ ' N ) )  = 0. (43 1 

x, = L;'( L;,E L ~ ) x ~  (44) 

L;, = -+v+* (45) 

Equation (43) then effects a choice of Xw For example, if N = 1, it is found that 

where 

However, the computation (44) involves a quadrature over b ( r )  and, although the 
accuracy can be much enhanced in this way, this feature is unattractive from the 
standpoint of rapid computation. 

3. An illustrative example 

The difference between the correction procedure described above, the Kohn correction 
procedure and conventional perturbation theory can be illustrated by considering an 
exactly soluble problem. 
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Let 

d2 ( d r 2  
-+ k 2 +  p8( r - R )  

Then the regular solution is 

kR sin k ( r -  R ) u ( r -  R )  (47) 

where A is any constant. The K matrix is 

p sin' kR 
k - p sin kR cos kR' 

K =  

Using conventional petturbation theory we can obtain 

F( r )  = 2 p "F(") (  r )  
n 

where 

(49) 

Fen'( r )  = k-'[cos kr sin kRu( r - R )  + sin kr cos kRu( R - r)]F''-')( R )  + X, sin kr 

F'O' = X,, sin kr. 

If one makes the choice X ,  = 8,,,,, then the K matrix is 

(50)  

p sin' kR ij ( p  

k n = o  
K =  

The Born perturbation series then diverges for p > 2k cosec(2kR). If on the other 
hand we chose 

X ,  = -k-'X,, cos kR sin kR ( 5 2 )  

then we obtain the exact wavefunction and exact value of K in first order. 
The essential difficulty of the perturbation theory approach is that one is iterating 

with a particular choice of Green function and the results depend very significantly 
on the choice adopted. A similar difficulty occurs in the usual variational correction 
methods (Kohn 1948, Kat0 1950). In these methods let F ' b e  a function which satisfies 

(53 )  
F'(0) = 0 

F'- sin( kr + 8 )  + A,  cos( kr + 8 )  

where 0 is arbitrary and K is related to A by 

A cos 6 +sin 8 
cos 8-A sin 0' 

K =  

The Kohn procedure then gives the result that 

A = A , +  k-'  lox F'YF' dr. 

Let us choose for example 

F' = sec 8 sin kr 

(54) 
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then (55) becomes 

A = -tan 0 + pk- '  sec' 0 sin' kR 

pk- ' s in2  kR 
1 - pk- '  sin' kR tan 0 '  

K -  

The normal form of the Kohn correction is the one obtained by choosing 0 = 0 (Kato 
1950) and (58) then becomes identical with the first-order perturbation result in (51). 
Of all the other possible and equally valid choices of 0, the value 0 = ( 4 ~  - kR)  gives 
the exact result. 

The matrix L for this problem using the trial function (30) and R,  = 0, R,> R is 

( sin' kR i s i n  2kR 
4 sin 2kR cos' kR 

In  this case, exp( EL) = I + E L  and it follows using (19) and (20) that 

L = -PIC-' (59) 

pk- '  sin' kR 
1 - p ( 2 k ) - ' s i n  2kR 

K =  

which is the exact result. 

4. Concluding remarks 

The problem of solving sets of coupled differential ecuations has been solved by a 
variational method. The principal result is contained in equation (19) where X may 
be chosen to be given either by (23) or by (24). Which of these is used may affect the 
rate of convergence but not the final result. The K matrix can be determined to within 
a given accuracy by splitting the range of the calculation. 

The method has similarities to that of Kohn (1948) but by solving simultaneously 
for all the solutions of the set of equations the principal difficulty of the Kohn 
method-that any asymptotic normalisation can be used-is overcome. 

There is also an analogy with perturbation theory, wherein there is a problem 
closely akin to that of the Kohn variational method in that any Green function can 
be used and  the iteration may converge or diverge according to the choice made. 

One problem in which the correction procedure is likely to be useful is that of 
finding asymptotic solutions of coupled differential equations (Rudge 1984). 
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